Préface :
Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes
Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des connaissances utiles à la prise de décision, contrôler ou prévoir le comportement d'un système, diagnostiquer les causes d'un phénomène, etc.
Les réseaux bayésiens sont utilisés dans de nombreux domaines : santé et environnement (localisation de gènes, diagnostic, gestion des ressources naturelles), industrie et transports (contrôle d'automates et de véhicules), informatique et réseaux (agents intelligents), marketing (data mining, gestion de la relation client), management (aide à la décision, analyse financière, gestion des risques), etc.
Fondements théoriques, méthodologie de mise en oeuvre, études de cas et panorama des outils
Après une première partie de présentation "intuitive" des réseaux bayésiens accompagnée d'exercices, la deuxième partie du livre en expose les fondements théoriques, avec une étude détaillée des algorithmes les plus importants. Résolument pratique, la troisième partie de l'ouvrage propose une méthodologie de mise en oeuvre, un panorama des domaines d'application, six études de cas détaillées, ainsi qu'une présentation des principaux logiciels de modélisation de réseaux bayésiens (Bayes Net Toolbox, BayesiaLab, Hugin, Netica et Elvira).
À qui s'adresse l'ouvrage ?
* Aux ingénieurs, informaticiens, industriels, biologistes, économistes confrontés à des problèmes d'analyse de données, d'aide à la décision, de gestion des connaissances, de diagnostic ou de contrôle de systèmes.
* Aux étudiants en mathématiques appliquées, algorithmique, économie, recherche opérationnelle, gestion de production, automatique, etc.
Hacene@freebooks
No comments:
Post a Comment
We are delighted to interact with the post, but please
Terms of comment:
The comment must be within the context of the entry was not to put any external links or publicity even published commentary.